3126

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022

Computing K-Cores in Large Uncertain Graphs:
An Index-Based Optimal Approach

Dong Wen™, Bohua Yang™, Lu Qin

, Ying Zhang

, Lijun Chang™’, and Rong-Hua Li

Abstract—Uncertain graph management and analysis have attracted many research attentions. Among them, computing k-cores in
uncertain graphs (aka, (k, n)-cores) is an important problem and has emerged in many applications such as community detection, protein-
protein interaction network analysis and influence maximization. Given an uncertain graph, the (k, n)-cores can be derived by iteratively
removing the vertex with an n-degree of less than k. However, the results heavily depend on the two input parameters k and . The
settings for these parameters are unique to the specific graph structure and the user’s subjective requirements. In addition, computing and
updating the n-degree for each vertex is the most costly component in the algorithm, and the cost is high. To overcome these drawbacks,
we propose an index-based solution for computing (k, n)-cores. The size of the index is well bounded by O(m), where m is the number of
edges in the graph. Based on the index, queries for any k£ and n can be answered in optimal time. We propose an algorithm for index
construction with several different optimizations. We also propose a new algorithm for index construction in external memory. We conduct
extensive experiments on eight real-world datasets to practically evaluate the performance of all proposed algorithms.

Index Terms—K-Core, uncertain graphs, semi-external algorithms

1 INTRODUCTION

RAPHS have been widely used to model sophisticated

relationships between different entities due to their
strong representative properties. Many real-world applica-
tions contain uncertainty in the form of noise [1], measure-
ment errors [2], the accuracy of predictions [3], privacy
concerns [4], and so on. These uncertain relationships are
often modeled as an uncertain graph, where the actual exis-
tence of each edge is assigned an “existence probability”.

A large number of studies on uncertain graph analysis
and management have involved combining fundamental
graph problems with uncertain graph models. These studies
span a range of tasks, such as reliability searches [5], fre-
quent pattern mining [6] and dense subgraph detection [7].
Among the solutions, k-core is a popular and well-studied
cohesive subgraph metric [8], and the k-core conception in
the uncertain graph model is originally formalized in [9].

k-Cores in Deterministic Graphs. Given a deterministic
graph, a k-core is a maximal connected subgraph in which
each vertex has a degree of at least k [8]. k-cores are com-
puted by iteratively removing the vertex with the minimum
degree and incident edges. This is done in linear time. Com-
puting k-cores has a large number of real-world applications:

e Dong Wen, Bohua Yang, Lu Qin, and Ying Zhang, are with the Univer-
sity of Technology Sydney, Ultimo NSW 2007, Australia.
E-mail: {dong.wen, lu.qin, ying.zhang }@uts.edu.au, bohua.yang@student.
uts.edu.au.

o Lijun Chang is with the University of Sydney, Camperdown, NSW 2006,
Australia. E-mail: lijun.chang@sydney.edu.au.

e Rong-Hua Li is with the Beijing Institute of Technology, Beijing 100811,
China. E-mail: lironghuascut@gmail .com.

Manuscript received 26 Apr. 2020, revised 31 Aug. 2020; accepted 9 Sept.
2020. Date of publication 16 Sept. 2020; date of current version 3 June 2022.
(Corresponding author: Bohua Yang.)

Recommended for acceptance by 1. 2019.

Digital Object Identifier no. 10.1109/TKDE.2020.3023925

community detection [10], [11], network visualization [12],
network topology analysis [8], system structure analysis [13],
protein-protein interaction network analysis [14], and so on.
It also serves to find an approximation result for densest sub-
graph [15], betweenness score [16].

(k, n)-Cores in Uncertain Graphs. In the context of uncer-
tain graph models, the degree of each vertex is uncertain. A
(k,n)-core model in uncertain graphs is formalized in [9]. A
(k,n)-core is a maximal subgraph in which each vertex has
at least a probability of n that the degree of this vertex is at
least k. Note that, in this paper, we have imposed a connec-
tivity constraint to ensure the cohesiveness of the resulting
subgraph, i.e., a (k, n)-core is connected. Fig. 1 illustrates an
example of the (k, n)-cores. Here, given an integer k£ = 2 and
a probability threshold n = 0.3, the uncertain graph contains
two (2,0.3)-cores — G[{ve, v3,v4,05}] and G[{vr, vy, v10}].
Computing the (k,n)-cores can be naturally applied in the
aforementioned areas. For example, in DBLP collaboration
network, each vertex represents an author, and edges repre-
sent co-authorships. The edge probability is an exponential
function based on the number of collaborations [17]. A
(k,n)-core in this case may be a research group. In addition,
[9] introduced some specific applications for (k,n)-cores
associated with uncertain graph models, such as influence
maximization and task-driven team formation.

Given an uncertain graph G, an integer k and a probabil-
ity threshold n, this paper explores the problem of effi-
ciently computing all the (k, n)-cores in G. In other words,
our aim is to compute a set of vertex sets, and the induced
subgraph of each vertex set is a (k, n)-core.

The Online Approach. In [9], (k, n)-cores are derived using
an n-core decomposition algorithm. The algorithm com-
putes an 5-core number for each vertex v in G, where the
n-core number for u is the largest integer & such that a
(k, n)-core containing u exists. Let the n-degree of a vertex u
be the largest possible degree such that the probability of u

1041-4347 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:33:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0903-1503
https://orcid.org/0000-0002-0903-1503
https://orcid.org/0000-0002-0903-1503
https://orcid.org/0000-0002-0903-1503
https://orcid.org/0000-0002-0903-1503
https://orcid.org/0000-0001-6420-0026
https://orcid.org/0000-0001-6420-0026
https://orcid.org/0000-0001-6420-0026
https://orcid.org/0000-0001-6420-0026
https://orcid.org/0000-0001-6420-0026
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0002-2674-1638
https://orcid.org/0000-0002-2674-1638
https://orcid.org/0000-0002-2674-1638
https://orcid.org/0000-0002-2674-1638
https://orcid.org/0000-0002-2674-1638
https://orcid.org/0000-0002-6830-3900
https://orcid.org/0000-0002-6830-3900
https://orcid.org/0000-0002-6830-3900
https://orcid.org/0000-0002-6830-3900
https://orcid.org/0000-0002-6830-3900
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
mailto:dong.wen@uts.edu.au
mailto:lu.qin@uts.edu.au
mailto:ying.zhang@uts.edu.au
mailto:bohua.yang@student.uts.edu.au
mailto:bohua.yang@student.uts.edu.au
mailto:lijun.chang@sydney.edu.au
mailto:lironghuascut@gmail.com

WEN ETAL.: COMPUTING K-CORES IN LARGE UNCERTAIN GRAPHS: AN INDEX-BASED OPTIMAL APPROACH

\
\
\

/
N /
7 O,Q@Qb\~~’ 0-6’\@

Fig. 1. The (k,n)-cores of G for k = 2and n = 0.3.

to have that degree is no less than 7. The algorithm itera-
tively removes the vertex with the minimum n-degree and
updates the n-degrees of the neighbors. With a small modifi-
cation, this algorithm could compute all the (k, n)-cores in
our problem. Specifically, we can iteratively remove all the
vertices with n-degrees of less than & and derive a set of
resulting vertices. The final result can then be generated by
performing a connected component detection procedure.
Motivation. Even though the online approach can success-
fully compute the (k, n)-cores, several challenges remain:

e Parameters Tuning. The results heavily depend on
two input parameters, k and 7, and these parameter
settings usually depend on the topological structure
of the input graph along with user’s subjective
requirements. To arrive at a satisfying result, users
may need to run the algorithm several times to prop-
erly tune the parameters.

o Query Efficiency. Computing and updating the n-degree
for each vertex is costly and accounts for the majority
of the running time in the algorithm. Even though [9]
proposes a dynamic programming approach to par-
tially offset this problem, the algorithm is still time-
intensive and is not scalable to large uncertain
graphs.

An Index-Based Approach. Motivated by these challenges,
we have developed an order-based index structure, called
UCO-Index. The general idea is to retain the resulting vertices
for every possible k and 5. Specifically, a probability order for
each vertex is maintained. Given an integer k£ and a probabil-
ity threshold 7, a vertex in the result set is identified by com-
paring the k-th value in the order for the vertex with 5. The
final result is then produced by performing a connected com-
ponent detection on the vertex set. We have imposed a bound
on the length of the order for each vertex according to the core
number, i.e., the largest integer k such that a k-core exists con-
taining this vertex. Therefore, the space for the UCO-Index is
well-bounded by O(m), where m is the number of edges in
the graph. The time complexity for query processing is O(n +
> e Deg(u)) for every possible parameter setting of k and 7,
where 7 is the number of vertices and) .~ Deg(u) is the sum
of degrees of all the vertices in the result set C.

There is still room to reduce the amount of time it takes
for query processing based on the UCO-Index. Hence, we
further propose an alternative method for computing
the (k,n)-cores based on a forest index structure, called
UCF-Index. In this method, rather than maintaining the
order of each vertex, UCF-Index maintains a tree structure
for each integer k. Each tree node contains a set of vertices,
and a probability value is assigned to the tree node, which
means a corresponding (k, n)-core that contains these verti-
ces exists. The size of UCF-Index is also bounded by O(m).

3127

Using the UCF-Index, we make the time complexity of
query processing optimal. In other words, let |C| be the
number of vertices in the result set. The running time of the
query algorithm is bounded by O(|C)).

Further, we have explored two optimizations to speed up
construction of the index. The first one is called core-based
reduction. By computing the core number of each vertex,
some unnecessary neighbors of each vertex are pruned to
reduce the running time required to compute and update
the probabilities for each vertex. This approach is especially
effective in the last few iterations of the index construction
algorithm. The second optimization is called core-based
ordering. This approach avoids the need for repeated com-
putations of each vertex in the dynamic programming
schema as each iteration of index construction algorithm
proceeds without breaking the correctness. Our experi-
ments demonstrate a significant increase in speed as a result
of these two optimizations.

I/O Efficient Query Processing. We also study an index-based
solution when a graph cannot be entirely loaded in memory.
We adopt the semi-external setting [18], [19], which allows
O(n) memory usage. The structure of UCF-Index can be natu-
rally stored in external memory. We use the same strategy of
in-memory query processing to derive results from the exter-
nal index and achieve the optimal I/O complexity O(|C|/B).
To construct UCEF-Index in external memory, straightfor-
wardly using the strategy of in-memory index construction
incurs significant I/O cost due to frequent random accesses of
external memory. We propose a new framework for external
index construction and derive the index by sequentially
accessing the external graph in several iterations. Several opti-
mizations are also given to further improve the efficiency.

Contributions. The main contributions of this paper are
summarized as follows:

o The first index-based solution for computing (k,n)-cores
in uncertain graphs. This study presents an effective
index structure, called UCF-Index, for computing all
the (k,n)-cores. The size of UCF-Index is well-
bounded by O(m). To the best of our knowledge,
this is the first index-based solution to this problem.

e Optimal query processing. We present an efficient
query algorithm based on UCF-Index for any pos-
sible k£ and 7. The time complexity is optimal and
linear to the number of vertices in the result set.

e Optimizations for index construction. We give two opti-
mizations, core-based reduction and core-based ordering,
to improve the efficiency of index construction.

e Index Construction in External Memory. We propose a
new framework for index construction in external
memory. Several optimizations are given to reduce
I/0 cost and further improve the efficiency.

o Extensive performance studies on both real-world and
synthetic datasets. Extensive experiments were con-
ducted with all the proposed algorithms on eight
real-world datasets. The results demonstrate that
this index-based approach is several orders of mag-
nitude faster than the online approach.

Outline. Section 2 provides some preliminary concepts

and formally defines the problem. In Section 3, we review
an existing solution and explain the online approach in

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:33:49 UTC from IEEE Xplore. Restrictions apply.

3128

detail. Section 4 describes the basic structure of the index.
Section 5 presents the optimized forest-based index struc-
ture. Section 6 proposes the algorithm for index construc-
tion in external memory. Section 7 practically evaluates the
proposed algorithms. Section 8 summarizes related works,
and Section 9 concludes the paper.

Extensions Beyond the Conference Version. The conference
version of this paper can be found in [20]. The current ver-
sion mainly adds a new Section 6, which proposes a new
algorithm for index construction in external memory. Some
corresponding experiments are added in Section 7. Due to
the space limitation, we omit straightforward proofs for
lemmas and theorems. We also remove several parts, which
do not affect the understanding of the extension. 1) We
remove Section 4.3, which proposes an algorithm for
UCO-Index construction. 2) We remove Section 5.3, which
proposes an algorithm and optimizations for UCF-Index
construction. 3) We remove some experimental results,
including the query time for different parameters, the index
size, the running time of in-memory algorithms for index
construction, and the scalability of the index construction.

2 PRELIMINARIES

K-Core. Given a deterministic undirected graph G(V, E), V is
the set of vertices and £ is the set of edges. The neighbor set
of a vertex u is denoted as N(u,G). The degree of u is
denoted as deg(u, G). We use the terms N(u) and deg(u) for
simplicity when the context is clear. Given a set of vertices
V', the induced subgraph of V' is denoted as G[V'], i.e,
GV = (V' {(u,v) € Elu,v e V'}).

Definition 1 (k-Core). Given a graph G(V, E) and an integer
k, the k-core is a maximal connected induced subgraph G'[V']
in which every vertex has a degree of at least k, i.e., Yu €
V' deg(u,G") > k. [8]

Definition 2 (Core NUMBER). Given a graph G(V, E), the core
number for a vertex u, denoted as core(u), is the largest integer
of k such that a k-core containing u exists.

Given a graph G, computing core numbers for all vertices
is called core decomposition, which can be done by itera-
tively removing the vertex with the minimum degree. The
time complexity is O(m). [21], [22]

K-Core in Uncertain Graphs. Given an uncertain graph
G(V, E, p), p is a function that maps each edge to a probabil-
ity value in [0,1]. The probability of an edge e < E is
denoted by p.. We denote the neighbor set and the degree
of a vertex uin G as N'(u, G) and Deg(u, G) respectively.

In line with existing works, we assume that the probabil-
ity of each edge actually existing is independent, and adopt
the well-known possible-world semantics for uncertain
graph analysis. There exist 2/l possible graph instances
under this assumption. The probability of observing a graph
instance G(V, E'), denoted by Pr(G), is:

Pr(G) = []re II (1 =po) (1)

ecE' ecE\E'

The concept of (k,n)-cores, originally defined in [9], is
based on possible-world semantics.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022

Definition 3 ((k, n)-Core). Given an uncertain graph G(V, E, p),
an integer k and a probabilistic threshold n € [0, 1], the (k, n)-core
of G is a maximal connected induced subgraph G'[V'] such that the
probability that each vertex u € V' has a degree of at least k in G' is
not less than n, i.e.,Yu € V', Pr(deg(u,G') > k] > n.

Note that we have slightly revised this definition by add-
ing a connectivity constraint to the (k, n)-cores.

Example 1. Consider the uncertain graph g in Fig. 1. Given
an integer k£ = 2 and a probability threshold n = 0.3, we
identify two (2,0.3)-cores, as marked in the figure. One is
G[{v2,v3,v4,v5}], and the other one is G[{v7, vy, v19}]. We
denote G[{vs, v3,v4,v5}] as G; for simplicity. Consider the
vertex vy in Gi. There are three edges connected to v, in
G1, and we have Pr[deg(ve,G1) > 2] = 0.568. Similarly, we
have Prldeg(vs,G1) > 2] =0.8, Pr[deg(vs,G1) >2]=0.3
and Pr[deg(vs,G1) > 2] = 0.656. G; is maximal. Assume
that we add v; in to G;. We have Prideg(vi,G1) > 2] =
0.1 < 0.3. Therefore, v; cannot be in the (2,0.3)-core.

Problem Definition. Given an uncertain graph G(V, E, p),
an integer k and a probabilistic threshold 7 € [0, 1], we aim
to compute all the (k, n)-cores of G.

Let C be the vertex set such that the induced subgraph
G[C] of C'is a (k, n)-core. The problem aims to compute a set
‘R containing all such vertex sets C' without any duplication.
In the case of k=2,7=0.3 in Fig. 1, we return {{vs, vs,
v, U }, {vr, v9, V10 } }-

3 ONLINE (k, n)-CORES COMPUTATION

In this section, we first review an existing solution [9] for the
problem of 5-core decomposition, as several key concepts
and ideas intuitively fit our problem. Then, we provide our
online solution for computing (k, n)-cores.

3.1 An Existing Solution for n-Core Decomposition
Given an uncertain graph G, let G-* be the set of all possible

graph instances where u has a degree of at least k, i.e., G=% =
{G C G|deg(u,G) > k}. We have the following equation [9]:

Prideg(u,G) > K = Y Pr(G). 2

GegZ*

Based on Equation 2, the definition for the n-degree and the
n-core number for each vertex follows.

Definition 4 (n-Degree). Given an uncertain graph G(V, E, p)
and a probabilistic threshold n € [0, 1], the n-degree of a vertex
u €V, denoted by n-deg(u,G), is the largest integer of k that
satisfies Prldeg(u,G) > k] > n.[9]

Definition 5 (7-Core Number). Given an uncertain graph
G(V,E,p) and a probabilistic threshold n € [0,1], the n-core
number for a vertex u, denoted as n-core(u), is the largest inte-
ger of k such that a (k, n)-core containing u exists.

Lemma 1. Given an uncertain graph G and a probability thresh-
old n € [0,1], a vertex w is in a (k, n)-core iff n-core(u) > k.

The problem of computing the 5-core numbers for all
vertices is called n-core decomposition. The solution pro-
posed in [9] is provided in Algorithm 1. Algorithm 1 shares

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:33:49 UTC from IEEE Xplore. Restrictions apply.

WEN ETAL.: COMPUTING K-CORES IN LARGE UNCERTAIN GRAPHS: AN INDEX-BASED OPTIMAL APPROACH

the similar idea with deterministic core decomposition, and
the pseudocode is self-explanatory. The key steps in the
algorithm are computing (line 1) and updating (Iine 8) the
n-degrees of the vertices. We introduce their details below.

Algorithm 1. n-Core DECOMPOSITION

Input: An uncertain graph G(V,E,p) and a probability
threshold
Output: n-core numbers for all vertices in G
1 compute n-deg(u, G) forallu € V;
2 while G is not empty do
3 k— miﬂuevﬁ-deé?(u: g)/
4 while Ju € Vs.t. n-deg(u,G) < k do
5 n-core(u) «— k;
6 foreach v € N(u,§) do
7 remove edge (u,v) from G;
8 update n-deg(v, G);
V=V {u};
10 return n-core(u) for all vertices u;

\O

n-Degree Computation. To compute the n-degree, we first
present the following equation:

Deg(u)

S Prideg(u) =

i=k =0

k—1
Prldeg(u) > K] =

3)

Based on Equation (3), we can start with Pr{deg(u) > 0]
1. Tteratively, we increase 7 by one and compute Pr{deg(u) =
for a vertex u. We calculate Prldeg(u) > i+ 1] as Pr[deg(u) >
i] — Pr[deg(u) = i]. We repeat this step and terminate once
Pr[deg(u) > i+ 1] < n.Thenwe have n-deg(u) =

To compute Pr[deg(u) =] for a vertex u, we use the
dynamic-programming method given in [9]. Assume that
E(u) = {e1,€2,...,epegu)} is the set of all the edges con-
nected to u in some order. The intuitive idea of dynamic
programming is that, if a vertex u has a degree of i, one of
the following two cases applies: either (i) i — 1 edges exist in
{e1,€2,. .., epeguy—1} and ep.y) exists; or (ii) i edges exist in
{e1, €2, ..., €peguy—1} and epey,y does not exist.

Given a subset E'(u) C E(u), let deg(u|E'(u)) be the
degree of u in the subgraph G'(V, E\(E(u)\E'(u)),p), and
X(h,j) = Prldeg(ul{e1,ea,...,en}) = j]. We have the follow-
ing dynamic-programming recursive function [9] for all h €
11, Deg(w)], € [0, h:

X(h, j)

Several initialization cases are also given as follows:

)

V

:pghX(h—1,j—1)+(1—pgh)X(h—1,j). 4

X(0,0) =1
X(h,—1) =0, forall h € [0,Deg(u)],
X(h,j) =0, forall h €[0,Deg(u)],j € [h+ 1,

(5)

Lemma 2. The time complexity to compute the n-degree of a ver-
tex w is O(n-deg(u) - Deg(u)). [9]

n-Degree Update. Given the incident edge set E(u) of a
vertex u, assume that an edge e is removed from E(u). To
compute the updated probability Pr[deg(u|E(u)\{e}) =],
we introduce the following equation [9]:

i] =1 Prldeg(u) =1].

3129

Prideg(u| E(u
Pr(deg(u) = 1]

Ne}) =9)] =
= peLr{deg(ulE(u)\{e}) =i —1] _ (©)
1—=pe

Based on the equation above, we compute Pr[deg
(u|E(u)\{e}) =] for each i € [1,n-deg(u)] in constant time,
given that Pr(deg(u|E(u)\{e}) = 0] = Prideg(u) = 0].

Lemma 3. Given an uncertain graph G and a removed incident
edge e to a vertex u, the time complexity to update the n-degree
of wis O(n-deg(u)). [9]

Lemma 4. Given an uncertain graph G(V, E,p), the time com-
plexity of Algorithm 1 is O(3_, ., n-deg(u) - Deg(w)). [9]

3.2 An Online Approach to Compute (%, n)-Cores
Based on several concepts introduced in the previous sec-
tion, we turn to the online approach for computing all
(k,m)-cores. Our approach is similar to Algorithm 1, which
iteratively removes the vertex that does not belong to the
result set. Before presenting the algorithm, we make the fol-
lowing observation for optimization.

Observation 1. Given an uncertain graph G and a (k, n)-core
G|C] for any parameter settings for k and n, there exists a
k-core G[C'] containing G[C], i.e., C C C'.

Based on Observation 1, we first recursively remove the
vertices with degrees of less than k, since these vertices can-
not be in the result set for any (k,n)-core. We provide the
pseudocode for our approach in Algorithm 2.

Algorithm 2. (k, n)-Cores COMPUTATION

Input: An uncertain graph G(V, E,p), an integer k and a
probability threshold n
Output: All (k, n)-coresin G
1 while Ju € Vs.t. Deg(u) < kdo
2 foreach v € N(u,G) do
3 remove the edge (u,v) from G;
4 Deg(v) < Deg(v) — 1;
5 V—V\{u};
6 compute n-deg(u) forallu € V;
7 while 3u € V s.t. n-deg(u) < kdo
8 foreach v € N(u,G) do
9 remove the edge (u,v) from G;
10 update n-deg(v);
11 V—V\{u};
12 R —0;
13 foreach connected component G[C] € G do
14 R—RU{CYH
15 return R;

Lines 1-5 compute the k-cores. Lines 6-11 recursively
remove the vertices with 7-degrees of less than & and gener-
ate a subgraph containing all result vertices. Lines 12-14
determine the connected components in the result. The time
complexity of Algorithm 2 is O(}", ., n-deg(u) - Deg(u)),
which is the same as that of Algorithm 1.

Drawbacks of the Online Approach. Even though Algorithm
2 successfully computes all the (k,n)-cores, several draw-
backs still exist. First, changing the input parameters may
heavily influence the resulting (k,n)-cores, especially in

e graphs. We consider the case in Fig. 1. If we change

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloade on January 23,2024 at 03:33:49 UTC from |IEEE Xplore. Restrictions apply.

3130

the input parameter 7 from 0.3 to 0.4 and keep k = 2, vertex
vy will be removed and the result will change to
{{wv2,vs3,v5}, {vr,v9,v19}}. Additionally, we find that the
major cost in Algorithm 2 is computing and updating the
n-degrees of the vertices. This is extremely time-consuming
and means the algorithm cannot be scaled to big graphs.

Motivated by the above challenges, we propose an index-
based approach. Based on the proposed index, we can
answer a query for any given k and 7 with a time complex-
ity that is only proportional to the size of the results.

4 AN INDEX-BASED APPROACH

4.1 The Index Structure

In this section, we introduce an index structure, called the
uncertain core n-orders index (UCO-Index). The general idea
of this index is to maintain the result vertices for every pos-
sible k£ and 7. In other words, given an integer k£ and a prob-
ability threshold 1, we aim to efficiently compute all the
result vertices based on the index structure. To complete
this task, we start by computing all result vertices from any
given probability threshold » under a specific fixed integer
k, as there is only a limited number of possible k. We pro-
vide the range of integer k as follows.

Observation 2. Given an uncertain graph G, we only need to
consider the parameter 1 < k < kyqq0, Where ki, = max,cy
core(u).

If k& > k., the probability that a (k, n)-core exists is 0.
We also provide the largest possible integer for k of each
vertex in the following observation.

Observation 3. Given an uncertain graph G and an integer k, a
vertex u cannot be in the (k, n)-core if core(u) < k.

Based on Observation 3, we derive a candidate set of result-
ing vertices by only considering the parameter &, which is {u €
V|core(u) > k}. Now, given the candidate set for each integer
k, we consider computing the exact result set by the probability
threshold 7. Recall that a vertex w is in the (k, n)-core if the
n-degree of u is at least k. We have the following lemma.

Lemma 5. Given an uncertain graph G, a parameter k and two
probability threshold 0<n<n' <1, a vertex u is in
(k,n)-core if it is in (k,n')-core.

According to the monotonicity in Lemma 5, we only need
to save the largest probability value n for each vertex u that
will be in the (k, n)-core. We call such value the n-threshold,
which is formally defined as follows.

Definition 6 (7-Threshold). Given an uncertain graph
G(V.E,p) and an integer k, the n-threshold of a vertex u,
denoted by n-thresholdy(u), is the largest n such that a
(k, m)-core containing u exists.

Based on Observation 3 and Definition 6, we have
n-thresholdy(u) = 0 for any vertex u if core(u) < k, and we
give a necessary and sufficient condition that a vertex will
be in the (k, n)-core as follows.

Lemma 6. Given an uncertain graph G, an integer k and a proba-
bility threshold n, a vertex w is in the (k,n)-core if and only if
n-thresholdy(u) > n.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022

=

HEHEOEOOO
1 0.6 092092 0.76 0.92 0.6 0.9 0.8 09 0.9
2 0.1 048 048 0.3 048 0.1 04 04 04

3 0.04 0.04 0.04 0.04

Fig. 2. The UCO-Index of G.

To efficiently compute all result vertices, we save all
n-thresholds of each vertex v in an order, which is formally
defined as follows.

Definition 7 (7-Order). Given an uncertain graph G and a ver-
tex u, the n-order of u, denoted by n-order(u), is a probability
order such that (i) the i-th ovalue in n-order(u) is
n-threshold;(u), and (ii) the length of n-order(u) is core(uw).

Example 2. The n-orders for all vertices in the uncertain
graph G in Fig. 1 are given in Fig. 2. Consider the vertex
vy. Given k=2, we have n-thresholds(vs) = 0.3. That
means vy is in a (2,0.3)-core, but not in any (2, n)-core if
n > 0.3.

Given the n-order of a vertex v and an integer k, we use a
constant time complexity to compute the n-thresholdi(u).
We save the n-orders for all vertices as our UCO-Index. The
size of the UCO-Index is well-bounded.

Theorem 1. Given an uncertain graph G(V, E, p), the space com-
plexity of the UCO-Index is O(3 . core(u)).

Since core(u) < Deg(u) for each vertex u, the size of the
UCO-Indez is also roughly bounded by O(|E|).

4.2 Query Processing
Before discussing the query processing, we give an alterna-
tive definition for the (k, n)-core based on Definition 6.

Lemma 7. Given a set of vertices C in G, the induced subgraph
GglC] is a (k,n)-core iff (i) Yu € C,n-thresholdy(u) > n; (ii)
G|C is connected; and (iii) C' is maximal.

We present the pseudocode for query processing in
Algorithm 3. It first identifies all vertices whose n-threshold
is not less than 5 in line 1. The n-threshold of a vertex u can
be computed by checking the k-th item in the n-order of u
according to Definition 7. The algorithm then computes
each (k, n)-core in lines 3—4. The correctness of Algorithm 3
can be guaranteed by Lemma 7.

Algorithm 3. UCO-BasED QUERY

Input: An uncertain graph G(V; E, p), an integer k, a probabil-
ity threshold n and UCO-Index
Output: All (k, n)-cores in G

1 V' — {u € V|n-thresholdy(u) > n};

2 R «— @}

3 foreach connected component G[C| € G[V'] do

4 R—RU{C}

5 return R;

Theorem 2. Given an uncertain graph G(V, E, p), an integer k and
a probability threshold n, the time complexity of Algorithm 3 is
O(|V] + 3 cc Deg(u)), where C'is the set of all result vertices,
ie., C = {u € V|n-threshold;(u) > n}.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:33:49 UTC from IEEE Xplore. Restrictions apply.

WEN ETAL.: COMPUTING K-CORES IN LARGE UNCERTAIN GRAPHS: AN INDEX-BASED OPTIMAL APPROACH

4.3 Index Construction

Definition 8 (k-Probability). Given an uncertain graph G and
an integer k, the k-probability of a vertex w, denoted by
k-prob(u, G), is the probability that Pr[deg(u,G) > k.

For each integer £, the n-thresholds for vertices in k-core can
be derived by iteratively removing the vertex with the mini-
mum k-probability. The detailed algorithm for UCO-Index
construction can be found in [20].

5 MAKING QUERY PROCESSING OPTIMAL

We proposed a UCO-Index based approach in the previous
section. Even though computing the n-degree is avoided,
and the used space can be well-bounded, the UCO-Index
still needs to detect all vertices in query processing, and this
may be hard to tolerate in big graphs. To address this issue,
we propose a forest-based index structure, namely uncertain
core n-forest index (UCF-Index). Based on the UCF-Index, we
compute the result set in optimal time.

The index structure is introduced in Section 5.1. We pro-
vide the query processing algorithm in Section 5.2. We also
propose an algorithm to construct the UCF-Index and two
optimizations to improve algorithmic efficiency. The details
can be found in the conference version [20].

5.1 Forest-Based Index Structure

According to Lemma 7, the key to query processing is com-
puting all vertices of u such that n-threshold;(u) > n. This
costs O(|V|) time in Algorithm 3. A straightforward idea to
improve the query’s efficiency is to sort the vertices in a
non-increasing order of their n-threshold for each integer k.
Based on this structure, we can compute all result vertices
in optimal time, and the total size of this structure can still
be bounded by O(3_, .y core(u)). However, given that there
is no topological information between vertices, we still use
O3> cc Deg(u)) time to identify the connected components,
where C' = {u € V|n-thresholdy(u) > n}.

Motivated by this, we propose the UCF-Index, which
organizes the vertices and their n-thresholds into a tree
structure, for each integer k. The tree is built based on
Lemma 5. Vertices with smaller n-thresholds are on the
upper side of the tree, and vertices with larger n-thresholds
are on the lower side. We name the tree structure n-tree,
which is denoted by n-tree;. Specifically, let C, be the set of
vertices whose core numbers are not less than %, i.e., C}, =
{u € V|core(u) > k}. We divide all vertices in C}, into differ-
ent tree nodes in n-tree;. Considering a tree node X in the
n-treey, the attributes of X are summarized as follows:

X.vertices: return a set of vertices.
X.n-threshold: return n-threshold;(u) for any vertex
u € X.vertices.
e X.parent: return the parent node of X.
e X.children: return the children nodes of X.
The details to implement these attributes are presented
below. Formally, the vertex set for each tree node is com-
puted using the following rule.

Lemma 8. Given an uncertain graph G and an integer k, we
group a vertex set S into a tree node X, i.e., X.vertices = S if
(i) Yu,v € S, n-threshold(u) = n-thresholdy(v); (ii) let n =

3131

n-threshold

Fig. 3. The n-tree of G for k = 2.

n-thresholdy,(u) for any u € S, there is a (k, n)-core G[C), such
that S C C; and (iii) S is maximal.

Then we give the rules for the parent-children relation-
ship of tree nodes. Let G[Vx] be the (k,X.n-threshold)-core
containing X.vertices, and N(Gx) be the set of tree nodes in
which each tree node Y satisfies Ju € Vi, v € Y.vertices :
(u,v) € EAv ¢& Vx. Note that there does not exist a tree
node Y € N(Gx) such that Y.p-threshold > X.n-threshold.
Otherwise, the vertices in Y also belong to Vx. The parent
for each tree node is defined as follows.

Lemma 9. Given an uncertain graph G and an integer k, a tree
node Y is the parent of the tree node X in n-treey, if Y is the
tree node in N(Gx) with the largest n-threshold, i.e.,
Y = arg maxyey(gy)Y-n-threshold.

In the case of N(Gx) = (), the tree node X is the root node,
and there may exist more than one trees for each integer k.
We give an example as follows.

Algorithm 4. UCF-BASED QUERY

Input: An uncertain graph G(V, E, p), an integer k, a proba-
bility threshold n and UCF-Index index
Output: All (k, n)-coresin G

1 7 < the set of all tree nodes in n-treey;

2 S « initialize an empty stack;

3 while 7 is not empty do

4 X « arg maxycy X.n-threshold;

5 if X.p-threshold > n then S.push(X)
6 else break

7 T —T\{X}

8 R0

9 while S is not empty do
10 X « S.pop();
11 if X is visited then continue C «— ();
12 C 0
13 Q « initialize an empty queue;
14 Q.insert(X);
15 while Q is not empty do
16 Y — Q.pop();
17 mark Y as visited;
18 C +— CUY.vertices;
19 foreach Z € Y.childrenQ.insert(Z) do
20 R—RU{C};
21 return R;

Example 3. Still considering the uncertain graph G in Fig. 1,
we give the n-tree of G for k = 2 in Fig. 3. The n-threshold
for each tree node is listed on the right side. For the tree
node {vs,v3,vs5}, the corresponding (2,0.48)-core is the
induced subgraph of the same vertex set. There are two
neighbor tree nodes — {v1, v} and {v4}. The n-threshold
of {w} is larger, and we set {vs} as the parent of
{1}2, V3, 1)3}

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:33:49 UTC from IEEE Xplore. Restrictions apply.

3132

Theorem 3. Given an uncertain graph G(V, E, p), the space com-
plexity of the UCF-Index is O(.\ core(u)).

5.2 Optimal Query Processing

We give an alternative definition for (k, n)-core based on the
proposed UCF-Index.

Lemma 10. Given an uncertain graph G, an integer k, and a
probability threshold n, let R be a tree node in n-treey, such that
(i) R.n-threshold > n; and (ii) there does not exist a parent R’
of R such that R'.n-threshold > n. The induced subgraph of
all vertices in the subtree rooted by R is a (k, n)-core.

According to Lemma 10, we process queries by collecting
all tree nodes in the subtree rooted by the tree node R. Fol-
lowing this idea, we provide the pseudocode for query
processing in Algorithm 4. We first collect all resulting tree
nodes in lines 1-7. We derive the tree node with the largest
n-threshold in line 4, if tree nodes are sorted in a non-
increasing order of their n-thresholds. The order can be pre-
computed in the index construction.

We iteratively process each tree node in the stack in
lines 9-20. Once an unvisited tree node is found in line 11,
we find a root node satisfying the conditions in Lemma 10.
We use a queue to compute all tree nodes rooted by X, and
collect all vertices in the tree nodes into C'in lines 12-19. We
add C into the result set in line 20.

Example 4. Given an example for computing the (k = 2,7 =
0.3)-core in G of Fig. 1 based on the UCF-Index. The n-tree
for k = 2 is given in Fig. 3. We first locate the tree nodes R
in Lemma 10, which are {vs} and {v7,v9,v10}. Then we
get two result cores, {vy, v9, v3,v5} and {v7, vy, v1g}.

Theorem 4. Given an uncertain graph G(V, E,p), an integer k
and a probability threshold n, the time complexity of Algorithm
4 is O(|C|), where C is the set of all result vertices, i.e.,
C = {u € Vin-thresholdi(u) > n}.

Based on the above theorem, we claim that the time com-
plexity of our query processing algorithm is optimal, since
it is bounded by the result size.

5.3 Optimizations for Index Construction

The algorithm to construct UCF-Index is called UCF-
Construct®. For each integer 1 < k < ky,,,, UCF-Construct*
contains two phases. The task of the first phase is to compute
n-threshold for each vertex, which is the same as that of
UCO-Index construction. We further propose two optimiza-
tions in [20], called core-based ordering and core-based reduction, to
speed up the first phase. The second phase constructs the
n-tree. Given an integer k, we process vertices in non-increasing
order of their n-thresholds, and the running time of -tree con-
struction can be bounded by O(E},) where E, is the set of edges
in the induced subgraph of k-core. More details and the final
pseudocode of UCF-Construct* can be found in [20].

6 INDEX CONSTRUCTION IN EXTERNAL MEMORY

In this section, we discuss the (k, n)-core computation when
graphs cannot be entirely stored in main memory. Assume
that graph is stored in a CSR format in external memory.
We adopt the semi-external setting, which allows O(n)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022

m-threshold
N number of vertices
\

\ A
—F——T = B e e ——— - ————a
10.48' 31 3 ' Vol Vil V1041 4 1 3 1V Vel Vipl0.31 41 1 'Vi10.1INAL 2 1V T vg!
[DS Py [| [P (P | _Ir_l_ { DU DU PRl PRSP PR [PURDI DSV DRI DN PR PR |
v
parent ID

Fig. 4. The UCEF-Index of G for k = 2.

memory usage. This assumption is reasonable in practice,
and it has been widely adopted in massive graph analysis
[18], [19]. We design an index-based solution for I/O effi-
cient (k,n)-core computation. We introduce the data struc-
ture to store UCF-Index in external memory and give the
corresponding query processing algorithm in Sections 6.1.
6.2 proposes a new strategy to locally compute 5-thresholds,
and Section 6.3 presents the corresponding algorithm for
index construction. Section 6.4 proposes several optimiza-
tions to further reduce I/Os and improve efficiency.

6.1 UCF-Index in External Memory

We can naturally extend the structure of UCF-Index for the
external memory setting, which is called UCEF-Index. Spe-
cifically, for each integer £, all tree nodes are arranged in a
non-increasing order of their 7-thresholds. For each tree
node, we store the following three elements, (1) the node’s
n-threshold, (2) the node’s parent ID, and (3) the containing
vertices. Note that the nodes” IDs are assigned in the index
construction by the order they arranged in the hard disk.
Consequently, we can derive the current vertex ID in query
processing accordingly and avoid the ID storage in the
index. For the containing vertices of each node, we store an
integer in the front to indicate the number of vertices. We
give an example of the index as follows.

Example 5. We show the UCEF-Index of G (Fig. 1) for k = 2
in Fig. 4. The corresponding tree structure is in Fig. 3. We
mark the fragment of the tree node containing {vz, vg, v19}
by gray. The node is the second one in the sequence, and
its implicit ID is 2. The parent ID is 4, which is the last
tree node.

I/O Efficient Query Processing. Based on UCEF-Index, we
can use a similar idea as Algorithm 4 to answer (k, n)-core
queries. We call the query processing algorithm for the
external index UCEF-Query. Given an integer k and a proba-
bility threshold 7, we sequentially scan the UCEF-Index for k.
Since tree nodes are arranged in a non-increasing order of
n-thresholds, each scanned node naturally satisfies line 4 of
Algorithm 4. After loading all nodes with n-threshold not less
than 7, we derive the tree structure based on the parent ID of
each node. The tree size is bounded by O(n), and the result
can be computed using lines 8 — 21 of Algorithm 4. The I/O
cost of UCEF-Query is still optimal.

Theorem 5. Given an integer k and a probability threshold n, the
I/O complexity of UCEF-Query is O(|C|/B), where C = {u €
Vin-thresholdy(u) > n}, and B is the block size.

6.2 Local n-Threshold Computation

We can naively perform an in-memory algorithm, e.g.,
UCF-Construct® [20], to construct UCEF-Index. Specifically,
for each integer k, we always first process the vertex with

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:33:49 UTC from IEEE Xplore. Restrictions apply.

WEN ETAL.: COMPUTING K-CORES IN LARGE UNCERTAIN GRAPHS: AN INDEX-BASED OPTIMAL APPROACH

the smallest k-probability. Under the O(n) memory limita-
tion, we load neighbors of each vertex from external mem-
ory for computing k-probability and release the memory for
loading neighbors of the next vertex. However, this strategy
incurs significant I/O cost due to frequent random access of
the external memory.

To improve the efficiency, we propose a new frame-
work, called UCEF-Construct, tailored for the external
memory setting. The framework releases the order limita-
tion and computes the n-threshold of each vertex only
using the neighbors’ n-thresholds. Given an integer k and a
probability value p, let N} (u) be the neighbors of u whose
n-threshold is at least p in the (k,n)-core, i.e., Nj(u) = {v €
N(u)|n-threshold,(v) > p}. The key theorem to support
UCEF-Construct is given as follows.

Theorem 6. Given an integer k, a probability value p, and a ver-
tex w with core(u) > k, we have p = n-thresholdy(w) iff

1) the k-probability of w in N%(u) is not smaller than p,
i.e., k-prob(u, G[{u} U N} (u)]) > p; and

2) there does not exists a probability value p' s.t. p' > p
and p' satisfies condition (1).

Example 6. We give an example to explain Theorem 6. We
consider the vertex v, in Fig. 1. Given k = 2, the n-thresholds
for neighbors of v, can be found in Fig. 2. Assume that p =
0.48. We have N94¥(v,) = {vy,v3,v5}. The probability that
vy connects at least 2 neighbors in NJ#(v,) is 0.3. Since 0.3 <
0.48, p is not the n-threshold of v,, which does not satisfy the
condition 1 in Theorem 6. In this case, the correct -threshold
for v4 should be 0.3.

Based on Theorem 6, the procedure local_thres in
Algorithm 5 shows the pseudocode for locally computing
the n-threshold of u. Given a vertex u and a set of vertices
N, we also use N to represent the induced subgraph of u
and N, ie., G[{u} U N], for ease of presentation when con-
text is clear. For example, in line 7 of local_thres,
k-prob(u, N;) is short for k-prob(u, G[{u} U N;]).

Lemma 11. Given an integer k, a query vertex w and the
n-thresholds for its neighbors N, local_thres correctly com-
putes the n-threshold for u.

Proof. According to the condition 1 of Theorem 6, all
n-thresholds for the selected neighbors in computing
k-probability are not smaller than p, and we have #(u) <
p1. The computed k-probability is not smaller than p, and
we have #(u) < py. By setting (u) = min(p;, ps), we guar-
antee #(u) in each iteration always satisfies the condition 1
of Theorem 6. Note that we start from ¢ = k since p,
would be 0ifi < k.

The condition 2 in Theorem 6 actually guarantees that
p is the largest possible value satisfying the condition 1.
local_thres computes such p in a bottom-up strategy. Spe-
cifically, we can find that the variable p; is monotonic
decreasing, and p, is monotonic increasing. As a result,
min(p;, po) first monotonically increases to a peak and
then monotonically decreases. Line 8 of local_thres
checks whether the current #(u) reaches the peak. Once
min(py,ps) stops increasing, the procedure breaks the
iteration and derives the correct #(u). O

3133

In line 7 of local_thres, we do not need to compute
k-prob(u, N;) from scratch in each iteration. Based on
Equation 3, we maintain Pr{deg(u, N;) = j]for 0 < j <k —1
in each iteration. The first iteration takes O(k?) time. In the
iteration ¢ with ¢ > 1, assume N; = N;_; U {v}. We have
Pr{deg(u, N;) = jl = (1 = puw)) - Prideg(u, Ni—1) = jl+ puw) *
Pr{deg(u, N;—1) = j — 1]. Therefore, the total time complexity
of line 7 is O(k - Deg(u)), which is the same as that of com-
puting k-probability of u in G.

Algorithm 5. UCEF-INDEX CONSTRUCTION

Input: An uncertain graph G(V, E, p)
Output: UCEF-Index of G

1 compute core(u) for all u € V;[18]

2 for k < k.. toldo

3 foreachu € V : core(u) > k do

4 t(u) = 1, and mark u as active;

5 while active vertex exists do

6 foreach u € V : wis active do

7 mark u as inactive;

8 load N(u) from the disk;

9 tog + t(u);
10 t(u) « local_thres(u, N (u), k);
11 if £(u) = £,4 then continue
12 foreach v € N(u) : t(u) < £(v) <ty
13 mark v as active;

//construct n-tree for k
14 sort vertices of k-core in non-increasing order of { values,
and write their neighbors accordingly in external
memory;
15 invoke Algorithm 8 in [20] to construct n-tree;
1 Procedure local_thres(u, N, k) :
2 sort vertices in N in non-increasing order of i values;
3 f(u) —0;
4 fork<i<|N|do
5 p1 < the i-th value in N;
6 N,; « the first 7 vertices in NV;
7 po < compute k-prob(u, N;);
8 if {(u) > min(py, p») then break
9 t(u) — min(py, p2);
10 return £(u);

6.3 The Algorithm

Based on Theorem 6, we give the pseudocode of
UCEF-Construct in Algorithm 5. To derive core numbers of
all vertices under the semi-external setting, we adopt the
algorithm SemiCore* in [18]. SemiCore* uses O(n) memory
space and computes core numbers in several iterations of
sequentially reading the external graph. For each integer £,
we compute 7-thresholds in lines 3-13.

For each vertex u, we maintain a core number core(u), a
probability value #(u) as an estimation of n-thresholdy(u),
and an indicator to represent whether the vertex is active.
Lines 34 initialize (u) and mark all vertices in the k-core as
active. Line 10 computes a new #(u) according to the current
t values of neighbors. Lines 12-13 mark possibly influenced
neighbors as active. The 75-threshold computation termi-
nates if there is no active vertex. For each vertex u, {(u) is
always an upper bound of n-threshold(u), which never
increases and converges to n-threshold(u) finally. The proof

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:33:49 UTC from IEEE Xplore. Restrictions apply.

3134

of the algorithmic correctness is similar to that of [18], [23],
and we omit the details here.

Note that the condition in line 12 significantly reduces
unnecessary active vertices. We explain the rationale as fol-
lows. For a vertex u, the computation of #(u) of each vertex

is based on the neighbors in NV ,i(u) (u) according to Theorem 6.

t(u) requires to be updated if N,t;(") (u) changes. Since #(u) for
any vertex u never increases, we mark a vertex v as active if
its neighbor u leaves N, ,i('”) (v). In line 12, #(v) < #,4 means
that v is in N,Z(”)(v) when computing #(v), and #(u) < i(v)
means that u leaves N é(l") (v).

Theorem 7. The I/O complexity of computing n-thresholds of all
vertices for every possible k is O(12), where [is the total num-
ber of iterations, and B is the block size.

n-Tree Construction. We construct n-trees in lines 14-15. In
the in-memory algorithm to construct 5-tree (Algorithm 8 in
[20]), vertices are processed in a non-increasing order of
their n-thresholds. We adopt the same idea here and create
a temporary file to arrange neighbors of vertices in k-core in
such order. As a result, we can construct the tree by sequen-
tially reading the required vertex neighbors from external
memory in only one iteration. The temporary file can be
constructed using a traditional external-sorting algorithm
with the I/O complexity O(%log u %), where M is the mem-
ory size [24]. The semi-external setting allows us to use

m

O(n) memory. Since n? > m, log%ﬁ can be regarded as a

constant, and the I/O complexity of external sorting is
reduced to O(m/B). For an integer k, the I/O cost of n-tree
construction is bounded by O(m/B), and the overall 1/O
cost of Algorithm 5 is still O(12).

6.4 Further Optimizations

It is obvious to see that the dominating cost in Algorithm 5
is incurred by computing n-thresholds. We propose several
optimizations to reduce the I/O cost of this step and further
improve the efficiency of Algorithm 5.

6.4.1 Reducing n-Threshold Estimations

Recall that for each vertex u in Algorithm 5, we initialize
t(u) by 1, which is a very loose upper bound of the
n-threshold for u. We reduce unnecessary n-threshold com-
putations by setting a relatively tighter upper bound.
Given an integer 1 < k < ko, and an arbitrary vertex u,
we can naturally use n-thresholdy_1(u) as an upper bound
of n-thresholdy(u) based on Lemma 5. To implement this
idea, we adopt a bottom-up strategy which computes
n-thresholds from k=1 to k= k. In this way, we set
t(u) = n-thresholdy_,(u) in line 4 of Algorithm 5.

6.4.2 Partial Neighbor Loading

According to Theorem 6, the n-threshold computation only
requires the neighbors whose core numbers are not smaller
than k. We reduce the I/O cost of the n-threshold computa-
tion by only loading necessary neighbors of each vertex. We
implement this idea by sorting neighbors of each vertex
after computing core numbers in line 1 of Algorithm 5. Spe-
cifically, we load neighbors of each vertex from the external

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022

memory. We sort the neighbors in non-increasing order of
their core numbers and write back to the external memory.
The I/O complexity of this step is O(m/B). Given the sorted
neighbors of each vertex, in line 8 of Algorithm 5, we
sequentially read neighbors one by one from external mem-
ory until a neighbor is found with the core number smaller
than k. This step reduces the I/O cost of line 8 from
O(IN(u)|/B) to O(|Ni(u)|/B).

6.4.3 Vertex Ordering

Compared with the in-memory index construction, Algorithm 5
may perform line 10 several times for each vertex u until #(u)
converges to n-threshold;(u) even using a tighter upper bound
in Section 6.4.1. Intuitively, ¢(u) will be close to n-thresholdy(u)
if ¢ values for all neighbors are close to their 7-thresholds. A
special case is shown as follows.

Lemma 12. Given an integer k, assume that all vertices are
sorted in a non-decreasing order of their n-thresholds for k,
ie., Yu,v € V,n-thresholdy(u) < n-threshold(v) if u < wv.
Line 10 of Algorithm 5 performs only once in computing
n-thresholdy(u) for every vertex u.

In the case of the lemma, vertices in line 6 are processed
in non-decreasing order of n-thresholds. i(u) derived in
line 10 is exactly n-thresholdy(u) according to Theorem 6.
Based on Lemma 12, we aim to improve the efficiency of
Algorithm 5 by postponing the 7-threshold computations
of some vertices if their n-thresholds are relatively large
with a high probability. To implement this idea, we sort
vertices in external memory after line 1 of Algorithm 5
using several heuristic rules. We first arrange vertices in a
non-decreasing order of their core numbers. We break a tie
by considering the probability that the vertex u has at least
one neighbor. Specifically, given two vertices u and v with
core(u) = core(v), we assign u to the front if Pr{deg(u,G) >
1] < Pr[deg(v,G) > 1]. The computation of Pr(deg(u,G) > 1]
for all vertices u takes O(m/B) I/Os since neighbors of
each vertex are required.

We perform an external sorting algorithm to rearrange the
graph structure according to the new vertex order, which
takes O(m/B) 1/0Os, similar to the discussion in Section 6.3.
Note that the neighbor ordering discussed in Section 6.4.2
can be done as a byproduct in the vertex ordering.

7 EXPERIMENTS

We conducted extensive experiments to evaluate the perfor-
mance of our proposed solutions. All algorithms were imple-
mented in C++ and compiled using a g++ compiler at a -O3
optimization level. All the experiments were conducted on a
Linux Server with an Intel Xeon 3.46 GHz CPU, 96 GB
DDR3-RAM, and a 2 TB 7200 RPM SATA III Hard Drive.
Datasets. We used eight publicly-available real-world graphs
to evaluate the algorithms. The edge probabilities in the first
four datasets come from real-world applications. Krogan is a
protein-protein interaction (PPI) network [25]. The edge proba-
bility represents the possibility of an interaction between the
pair of proteins connected by this edge [26]. Flickr is an online
community for sharing photos. The edge probability is the Jac-
card coefficient of interest groups two users share [9], [17].
DBLP is a computer science bibliography website. The edge

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:33:49 UTC from IEEE Xplore. Restrictions apply.

WEN ETAL.: COMPUTING K-CORES IN LARGE UNCERTAIN GRAPHS: AN INDEX-BASED OPTIMAL APPROACH

TABLE 1
Network Statistics
Datasets ‘ V‘ |E| degmax kmaz
Krogan 2,559 7,031 141 15
Flickr 24,125 300,836 546 225
DBLP 684,911 2,284,991 611 114
BioMine 1,008,201 6,722,503 139,624 448
Web-Google 875,713 4,322,051 6,332 44
Cit-Patents 3,774,768 16,518,947 793 64
LiveJournal 3,997,962 34,681,189 14,815 360
Orkut 3,072,441 117,185,083 33,313 253

probability is an exponential function based on the number of
collaborations [9], [17]. BioMine is a snapshot of the data-
base of the BioMine project [27] containing biological inter-
actions. The edge probability is based on the confidence
that the interaction actually exists [9], [17]. The last four
datasets are from SNAP (http://snap.stanford.edu/index.
html). Web-Google is a web network. Cit-Patents is a cita-
tion network. LiveJournal and Orkut are social networks.
Edge probabilities are assigned at random between 0 and
1. Detailed statistics of these datasets are summarized in
Table 1. The maximum degree (degy,q,) and the maximum
core number (k,,,,,) are shown in the last two columns.

Due to space limitation, we omit the evaluations for the
algorithms of in-memory index construction. Interested
readers can find the details in [20].

7.1 Performance of Query Processing

Evaluation-I: Query Performance on Different Datasets. The
running time of UC-Online (Algorithm 2), UCO-Query, and
UCF-Query with the default parameters & = 15 and n = 0.5
on all datasets are shown in Fig. 5. UCF-Query is not only
more efficient than UCO-Query but is also several orders of
magnitude faster than UC-Online on all datasets. The run-
ning time of UCF-Query on Krogan is about 0.012 us, which
is the smallest value in all results. Meanwhile, the running
times of UCO-Query and UC-Online are about 8 us and 2 ms
respectively on the same dataset. On the Orkut dataset with
over 100 million edges, UCF-Query only takes about 17 ms,
while UCO-Query and UC-Online takes approximately
857 ms and 190s respectively. We also evaluate the perfor-
mance of query processing by varying k and 7. The details
can be found in [20]. Regarding the external memory set-
ting, the running time of UCEF-Query is shown in the last
bar for each dataset in Fig. 5, and the corresponding number
of I/Os is shown in Fig. 6. The only difference between
UCEF-Query and UCF-Query is that UCEF-Query loads the
index from external memory.

UC-Online ! UCO-Query UCF-Query mmmm UCEF-Query

~ 10
o 10 I
Eio! i
=3 |
énlOS B | —
EIO7 |
Tl T
M]OQ }
<, %, % %, %, 9, %
“ “© % e, % 4, “
?
%, % %,

Fig. 5. Query time on different datasets.

3135

10°

10

10
Qi
10

1

3

Fig. 6. /0 cost of external query processing.

7.2 Performance of External Index Construction

We use UCF-Construct*-EM to represent the naive extension
of UCF-Construct*, which loads neighbors of each vertex
from external memory. We use UCEF-Construct” to denote
our final algorithm for index construction in external mem-
ory with all optimizations in Section 6.4.

Evaluation-1I: Memory Usage. We report the memory usage
of UCEF-Construct* with UCF-Construct-EM and the
in-memory algorithm UCF-Construct" as comparisons. We
can see a considerable decrease in memory usage from
UCF-Construct® to other external algorithms, since we limit
the memory usage to O(n). In the largest dataset Orkut,
UCEF-Construct* takes about 430 MB, while UCF-Construct*
takes up to 26 GB.

Evaluation-1II: External Index Construction. The running
time and I/O cost of our final algorithm UCEF-Construct*
for external index construction are reported in Figs. 8 and 9,
respectively. The performance of UCF-Construct*-EM is
also reported as a comparison. We can find that the strategy
for n-threshold computation in Theorem 6 is effective. In
several datasets, UCEF-Construct® is one order of magni-
tude faster than UCF-Construct*-EM, and the I/O cost of
UCEF-Construct” is almost two orders of magnitude smaller
than that of UCF-Construct'-EM. For example, in DBLP,
UCEF-Construct* and UCF-Construct*-EM take 11s and
189s, respectively.

Evaluation-1V: Optimizations for External Index Construc-
tion. We evaluate the effectiveness of optimizations pro-
posed in Section 6.4. We use UCEF-Construct to denote
Algorithm 5 without any optimizations in Section 6.4 and
record its running time and I/O cost in each dataset. We
use UCEF-Construct,; to denote the algorithm with the
upper bound optimization in Section 6.4.1. We use
UCEF-Construct,, to denote the algorithm with both upper
bound optimization in Section 6.4.1 and neighbor ordering
optimization in Section 6.4.2. Recall that UCEF-Construct” is
the final algorithm with all three optimizations. We record
the running time and I/O cost of these algorithms. For each
dataset, we compute the percentages that the running time
and the I/O cost of these algorithms account for those of

UCF-Construct*

UCF-Construct*-EM UCEF-Construct™ s

100GB

=)
Q
@

1GB
100MB

Memory Usage
S
£
w

IMB -

Fig. 7. Memory usage for external index construction.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:33:49 UTC from IEEE Xplore. Restrictions apply.

http://snap.stanford.edu/index.html
http://snap.stanford.edu/index.html

3136

UCF-Construct*-EM UCEF-Construct™

Running Time (s)
)

(o) @y
€ K

Fig. 8. Time cost for external index construction.

UCF-Construct*-EM UCEF-Construct™

/0
5\!

Fig. 9. I/O cost for external index construction.

UCEF-Construct,; [UCEF-Construct* mmm—

UCEF-Construct,,

100%
80%

60%

Percentage

40%

20%

Fig. 10. Speedup for external index construction.

UCEF-Construct, respectively. The results are shown in
Figs. 10 and 11. The upper bound optimization is the most
effective among them, and the speedup is obvious espe-
cially in large datasets. Note that in several small datasets of
Fig. 11, UCEF-Construct,, takes a little more I/Os than
UCEF-Construct,; due to the external sorting of vertex
neighbors. However, this optimization reduces a large num-
ber of unnecessary neighbors for the n-threshold computa-
tion and still achieves a speedup.

Evaluation-V: Scalability of External Index Construction. We
evaluate the scalability of UCEF-Construct” and UCF-
Construct'-EM. We vary the size and the density of Orkut
by randomly sampling vertices and edges from 20 to 100
percent. When sampling vertices, we derive the induced
subgraph of the sampled vertices, and when sampling
edges, we select the incident vertices of the edges as the ver-
tex set. The I/O cost is reported in Figs. 12a and 12b. The
running time is reported in Figs. 12c and 12d.

8 RELATED WORK

Uncertain Graphs. Many fundamental problems have been
studied in uncertain graphs. Jin et al. [5] study the distance-
constraint reachability problem in uncertain graphs.
Potamias et al. [17] answer k-nearest neighbor queries in
uncertain graphs. Gao et al. [28] study the problem of
reverse k-nearest neighbor search in uncertain graphs. Zou
et al. [6] investigate the problem of discovering and mining
frequent subgraph patterns in uncertain graphs. Jin et al. [7]
consider the problem of discovering highly reliable

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022

UCEF-Construct,

UCEF-Construct,,

UCEF-Construct* -

Percentage

Fig. 11. 1/0 reduction for external index construction.

UCF-Construct*-EM @ UCEF-Construct* €

11

10 T -(b 10 T é
10 O -
100t o9 1010 o0 © |
o @ 70"‘0 o %] 2 w07 O
= 08k P | = . ‘ &
10" &7 10" F o]
106 107
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
(a) I/O (Vary [V) (b) 1/0O (Vary |E])
~10° ~10°
2100 | O D (05
§0 o8] 20| oo
E100F O 1 Bl 0o
210’ O 102 X O
102t E10° 1@ 1
= =
& 10 o~ 102
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

(c) Time (Vary |V]) (d) Time (Vary |E|)

Fig. 12. Scalability of external index construction on Orkut.

subgraphs of uncertain graphs. The truss decomposition of
uncertain graphs is studied by [29].

K-Core Computations. k-core is defined by Seidman [8].
Batagelj and Zaversnik [21] propose a linear algorithm for
core decomposition. I/O efficient algorithms for core
decomposition are studied in [18], [22], [30]. Montresor et al.
[23] investigate a distributed algorithm for core decomposi-
tion. Core decomposition in random graphs is studied in
[31], [32], [33], [34]. Additionally, k-core is studied using
weighted graphs in [35], directed graphs in [36], dynamic
graphs in [37], [38], [39] and multi-dimensional graphs in
[40]. [9] first explores the k-core model in uncertain graphs.
The details of this approach are presented in Section 3. A
variation for the (k,n)-core, denoted by (k,6)-core, is pro-
posed in [41] to capture the k-core probability of each indi-
vidual vertex in the uncertain graph.

9 CONCLUSION

This paper presents an index-based solution for computing
all the (%, n)-cores in uncertain graphs. Our proposed index,
called UCF-Index, maintains a tree structure for each inte-
ger k. The size of UCF-Index is well-bounded by O(m).
Based on UCF-Index, queries for any input parameter £ and
n can be answered in optimal time. We also propose an
algorithm to construct the index in external memory. The
paper also opens several future problems. For example, a
potential task is to efficiently maintain the UCF-Index given
that many real-world graphs are highly dynamic. In addi-
tion, approximate solutions can be designed to speed up the
index construction.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:33:49 UTC from IEEE Xplore. Restrictions apply.

WEN ETAL.: COMPUTING K-CORES IN LARGE UNCERTAIN GRAPHS: AN INDEX-BASED OPTIMAL APPROACH

ACKNOWLEDGMENTS

Lu Qinis supported by ARC FT200100787. Ying Zhang is sup-
ported by ARC FT170100128 and DP180103096. Lijun Chang
is supported by ARC DE150100563 and DP160101513.
Rong-Hua Li is supported by NSFC Grants 61772346 and
Beijing Institute of Technology Research Fund Program for
Young Scholars.

REFERENCES

[1]
[2]
[3]

[4]

[5]

(6]

(7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

C. C. Aggarwal, Managing and Mining Uncertain Data. Berlin,
Germany: Springer, 2009.

E. Adar and C. Re, “Managing uncertainty in social networks,”
IEEE Data Eng. Bull., vol. 30, no. 2, pp. 15-22, 2007.

D. Liben-Nowell and J. Kleinberg, “The link-prediction problem
for social networks,” J. Amer. Soc. Inf. Sci. Technol., vol. 58,
pp- 1019-1031, 2007.

P. Boldi, F. Bonchi, A. Gionis, and T. Tassa, “Injecting uncertainty
in graphs for identity obfuscation,” Proc. VLDB Endowment, vol. 5,
pp. 1376-1387, 2012.

R. Jin, L. Liu, B. Ding, and H. Wang, “Distance-constraint reach-
ability computation in uncertain graphs,” Proc. VLDB Endowment,
vol. 4, pp. 551-562, 2011.

Z. Zou, H. Gao, and J. Li, “Discovering frequent subgraphs over
uncertain graph databases under probabilistic semantics,” in Proc.
16th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2010,
pp. 633-642.

R. Jin, L. Liu, and C. C. Aggarwal, “Discovering highly reliable
subgraphs in uncertain graphs,” in Proc. 17th ACM SIGKDD Int.
Conf. Knowl. Disc. Data Mining, 2011, pp. 992-1000.

S. B. Seidman, “Network structure and minimum degree,” Soc.
Netw., vol. 5, pp. 269-287, 1983.

F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich, “Core
decomposition of uncertain graphs,” in Proc. 20th ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2014, pp. 1316-1325.

W. Cui, Y. Xiao, H. Wang, and W. Wang, “Local search of commu-
nities in large graphs,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2014, pp. 991-1002.

C. Giatsidis, F. D. Malliaros, D. M. Thilikos, and M. Vazirgiannis,
“CORECLUSTER: A degeneracy based graph clustering frame-
work,” in Proc. 28th AAAI Conf. Artif. Intell., 2014, pp. 44-50.

J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,
“Large scale networks fingerprinting and visualization using the
k-core decomposition,” in Proc. 18th Int. Conf. Neural Inf. Process.
Syst., 2006, pp. 41-50.

H. Zhang, H. Zhao, W. Cai,]. Liu, and W. Zhou, “Using the k-core
decomposition to analyze the static structure of large-scale soft-
ware systems,” |. Supercomputing, vol. 53, pp. 352-369, 2010.

G. D. Bader and C. W. Hogue, “An automated method for finding
molecular complexes in large protein interaction networks,” BMC
Bioinf., vol. 4, 2003, Art. no. 2.

R. Andersen and K. Chellapilla, “Finding dense subgraphs with
size bounds,” in Proc. Int. Workshop Algorithms Models Web-Graph,
2009, pp. 25-37.

J. Healy, J. Janssen, E. Milios, and W. Aiello, “Characterization of
graphs using degree cores,” in Proc. Int. Workshop Algorithms Mod-
els Web-Graph, 2006, pp 137-148.

M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “K-nearest
neighbors in uncertain graphs,” Proc. VLDB Endowment, vol. 3,
pp. 997-1008, 2010.

D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu, “I/O efficient core
graph decomposition at web scale,” in Proc. Int. Conf. Data Eng.,
2016.

Z.Zhang, J. X. Yu, L. Qin, and Z. Shang, “Divide & conquer: I/O
efficient depth-first search,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2015, pp. 445-458.

B. Yang, D. Wen, L. Qin, Y. Zhang, L. Chang, and R. Li, “Index-
based optimal algorithm for computing k-cores in large uncertain
graphs,” in Proc. IEEE 35th Int. Conf. Data Eng., 2019, pp. 64-75.

V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores
decomposition of networks,” CoRR, vol. cs.DS/0310049, 2003.

W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “K-core
decomposition of large networks on a single PC,” Proc. VLDB
Endowment, vol. 9, pp. 13-23, 2015.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

3137

A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed
k-core decomposition,” IEEE Trans. Parallel Distrib. Syst., vol. 24,
no. 2, pp. 288-300, Feb. 2013.

D. E. Knuth, The Art of Computer Programming, Volume 3: (2nd Ed.) Sort-
ing and Searching. Addison Wesley Longman Publishing Co., Inc., Boston,
US, 1998.

N. J. Krogan et al., “Global landscape of protein complexes in the
yeast saccharomyces cerevisiae,” Nature, vol. 440, pp. 637-643, 2006.
A. D. Fox, B. J. Hescott, A. C. Blumer, and D. K. Slonim,
“Connectedness of PPI network neighborhoods identifies regula-
tory hub proteins,” Bioinformatics, vol. 27, pp. 1135-1142, 2011.

L. Eronen and H. Toivonen, “Biomine: Predicting links between
biological entities using network models of heterogeneous data-
bases,” BMC Bioinf., vol. 13,2012, Art. no. 119.

Y. Gao, X. Miao, G. Chen, B. Zheng, D. Cai, and H. Cui, “On effi-
ciently finding reverse k-nearest neighbors over uncertain
graphs,” Proc. VLDB Endowment, vol. 26, pp. 467-492, 2017.
X.Huang, W. Lu, and L. V. Lakshmanan, “Truss decomposition of
probabilistic graphs: Semantics and algorithms,” in Proc. Int. Conf.
Manage. Data, 2016, pp. 77-90. .

J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu, “Efficient core decompo-
sition in massive networks,” in Proc. IEEE 27th Int. Conf. Data
Eng., 2011, pp. 51-62.

S.Janson and M. J. Luczak, “A simple solution to the k-core problem,”
Proc. 12th Int. Conf. Random Structures Algorithms, 2007, pp. 1-306.

M. Molloy, “Cores in random hypergraphs and boolean formulas,”
Random Struct. Algorithms, vol. 27, no. 1, pp. 124-135, 2005.

T. Luczak, “Size and connectivity of the k-core of a random
graph,” Discrete Math., vol. 91, pp. 61-68, 1991.

B. Pittel, J. Spencer, and N. Wormald, “Sudden emergence of a
giantk-core in a random graph,” |. Combinatorial Theory, Ser. B,
vol. 67, pp. 111-151, 1996.

A. Garas, F. Schweitzer, and S. Havlin, “A k-shell decomposition
method for weighted networks,” N.]. Phys., vol. 14, 2012,
Art. no. 83030.

C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, “D-cores: Mea-
suring collaboration of directed graphs based on degeneracy,” in
Proc. IEEE 11th Int. Conf. Data Mining, 2011, pp. 201-210.

A. E. Sariytice, B. Gedik, G. Jacques-Silva, K.-L. Wu, and
U. V. Catalytirek, “Streaming algorithms for k-core decom-
position,” Proc. VLDB Endowment, vol. 6, pp. 433-444, 2013.
R.-H.Lj, J. X. Yu, and R. Mao, “Efficient core maintenance in large
dynamic graphs,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 10,
pp- 2453-2465, Oct. 2014.

Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin, “A fast order-based
approach for core maintenance,” in Proc. IEEE 33rd Int. Conf. Data
Eng., 2017, pp. 337-348.

F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, “When engage-
ment meets similarity: Efficient (k, r)-core computation on social
networks,” Proc. VLDB Endowment, vol. 10, pp. 998-1009, 2017.

Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin, “Efficient proba-
bilistic k-core computation on uncertain graphs,” in Proc. IEEE
34th Int. Conf. Data Eng., 2018, pp. 1192-1203.

Dong Wen reveived the BEng degree from Nankai
University, in 2013, and the PhD degree from the
Faculty of Engineering and Information Technology,
University of Technology Sydney, in2019. He is cur-
rently a postdoctoral research fellow with the Cen-
tre for Artificial Intelligence, University of
Technology Sydney. His research interests include
1/O efficient graph processing and streaming graph
analysis.

Bohua Yang received the BEng degree from the
Renmin University of China, in 2016. He is cur-
rently working toward the PhD degree in the Cen-
tre for Artificial Intelligence, University of
Technology, Sydney. His major research interests
include cohesive subgraph detection and graph
traversal algorithms on massive graphs.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:33:49 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022

Lu Qin received the BEng degree from the
Department of Computer Science and Technol-
ogy, Renmin University of China, in 2006, and the
PhD degree from the Department of Systems
Engineering and Engineering Management,
Chinese University of Hong Kong, in 2010. He is
currently an associate professor with the Centre
for Artificial Intelligence, University of Technology,
Sydney. His research interests include big graph
analytics and graph query processing.

Ying Zhang received the BSc and MSc degrees
in computer science from Peking University, and
the PhD in computer science from the University
of New South Wales. He is a professor and ARC
future fellow at CAl, the University of Technology
Sydney (UTS). His research interests include
query processing on data stream, uncertain data
and graphs. He was an Australian Research
Council Australian Postdoctoral Fellowship (ARC
APD) holder (2010-2013) and ARC DECRA
research fellow (2014-2016).

Lijun Chang received the bachelor's degree
from the Renmin University of China, in 2007,
and the PhD degree from the Chinese University
of Hong Kong, in 2011. He is a senior lecturer
and ARC future fellow with the School of Com-
puter Science at the University of Sydney. He
worked as a postdoc and then DECRA research
fellow at the University of New South Wales from
2012 to 2017. His research interests are in the
fields of big graph (network) analytics, with a
focus on designing practical algorithms and
developing theoretical foundations for massive graph analysis. He has
co-authored two monographs, and published more than 50 papers in top
venues such as SIGMOD, KDD, Proceedings of the VLDB Endowment,
ICDE, VLDB Journal, IEEE Transactions on Knowledge and Data Engi-
neering, and Algorithmica.

Rong-Hua Li received the PhD degree from the
Chinese University of Hong Kong, in 2013. He is
currently an associate professor at Beijing Insti-
tute of Technology (BIT), Beijing, China. Before
joining BIT, in 2018, he was an assistant profes-
sor at Shenzhen University. His research inter-
ests include graph data management and
mining, social network analysis, graph computa-
tion systems, and graph-based machine learning.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:33:49 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

